Identification of demand patterns for selective processing: a case study
Mark P. Businger and
Robert R. Read
Omega, 1999, vol. 27, issue 2, 189-200
Abstract:
A basic function in the proper management of repair part inventories is the anticipation of demand. The US Navy maintains a database of univariate demand data for its repair part inventories using a quarterly time interval and a limited number of periods. Historically, the exponential smoothing procedure has been used for demand forecasting. This method is simple and robust, but it does not make use of any characteristics of the entire time series such as trend, cycles, presence of outliers or demand clustering. Sharper information may be available with the use of the Box-Jenkins system. Not all repair parts can capitalize on this and there is a problem in identifying those that do. Moreover the number of parts is quite large and the speed of identification is an issue. This paper addresses this problem. The research begins with the development of several simple, robust and dimensionless time series features. These are used to predict the suitability of Box-Jenkins (ARIMA) modeling. Two predictive models are considered: classical regression and a modern expert-system statistical package, ModelQuest(TM). Their strengths and weaknesses are compared. The result of either is a computationally simple means for determining which repair parts time series may benefit from the Box-Jenkins methodology for purposes of inventory management.
Keywords: Box-Jenkins; Statistics; Time; series; Case; study (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(98)00039-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:27:y:1999:i:2:p:189-200
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().