Performance evaluation based on multiple attributes with nonparametric frontiers
L. E. Caporaletti,
J. H. Dulá and
Norman Womer
Omega, 1999, vol. 27, issue 6, 637-645
Abstract:
Performance rating and comparison of a group of entities is frequently based on the values of several attributes. Such evaluations are often complicated by the absence of a natural or obvious way to weight the importance of the individual dimensions of the performance. This paper proposes a framework based on nonparametric frontiers to rate and classify entities described by multiple performance attributes into 'performers' and 'underperformers'. The method is equivalent to Data Envelopment Analysis (DEA) with entities defined only by outputs. In the spirit of DEA, the weights for each attribute are selected to maximize each entity's performance score. This approach, however, results in a new linear program that is more direct and intuitive than traditional DEA formulations. The model can be easily understood and interpreted by practitioners since it conforms better to the practice of evaluating and comparing performance using standard specifications. We illustrate the model's use with two examples. The first evaluates the performance of employees. The second is an application in manufacturing where multiple quality attributes are used to assess and compare performance of different manufacturing processes.
Keywords: Performance; evaluation; Data; Envelopment; Analysis; (DEA); Linear; programming (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(99)00022-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:27:y:1999:i:6:p:637-645
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().