A neural network model for solving the lot-sizing problem
Lotfi K. Gaafar and
M. Hisham Choueiki
Omega, 2000, vol. 28, issue 2, 175-184
Abstract:
Artificial neural network models have been used successfully to solve demand forecasting and production scheduling problems; the two steps that typically precede and succeed Material Requirements Planning (MRP). In this paper, a neural network model is applied to the MRP problem of lot-sizing. The model's performance is evaluated under different scenarios and is compared to common heuristics that address the same problem. Results show that the developed artificial neural network model is capable of solving the lot-sizing problem with notable consistency and reasonable accuracy.
Keywords: Neural; network; models; Lot-sizing; Heuristics; Design; of; experiments (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(99)00035-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:28:y:2000:i:2:p:175-184
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().