A simple neural network for ARMA(p,q) time series
H. Brian Hwarng and
H. T. Ang
Omega, 2001, vol. 29, issue 4, 319-333
Abstract:
This study was designed: (a) to investigate a simple neural-network solution to forecasting the special class of time series corresponding to a wide range of ARMA(p,q) structures; (b) to study the significance of matching the input window size with the nature of time series. The study adopted a simulation approach in conjunction with an experimental design. It is discovered that a simple two-layered network, with proper input window size, is able to consistently outperform the multi-layer feedforward network and that the two-layered network is comparable to the Box-Jenkins modelling approach for a majority of the ARMA(p,q) time series studied and better than the Box-Jenkins modelling approach when the ARMA structure gets more complex and generates more variability. The results affirm that it is unnecessary to use multi-layer feedforward networks for this special class of linear time series and that the two-layered network can be a useful forecasting alternative to the widely popular Box-Jenkins model.
Keywords: Backpropagation; Box-Jenkins models; ARIMA; ARMA; Time series analysis; Forecasting; Experimental design; Simulation (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(01)00027-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:29:y:2001:i:4:p:319-333
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().