EconPapers    
Economics at your fingertips  
 

An empirical study of design and testing of hybrid evolutionary-neural approach for classification

Parag C. Pendharkar

Omega, 2001, vol. 29, issue 4, 361-374

Abstract: We propose a hybrid evolutionary-neural approach for binary classification that incorporates a special training data over-fitting minimizing selection procedure for improving the prediction accuracy on holdout sample. Our approach integrates parallel global search capability of genetic algorithms (GAs) and local gradient-descent search of the back-propagation algorithm. Using a set of simulated and real life data sets, we illustrate that the proposed hybrid approach fares well, both in training and holdout samples, when compared to the traditional back-propagation artificial neural network (ANN) and a genetic algorithm-based artificial neural network (GA-ANN).

Keywords: Artificial; intelligence; Artificial; neural; networks; Genetic; algorithms; Discriminant; analysis; Classification; problem; Learning (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(01)00031-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:29:y:2001:i:4:p:361-374

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:29:y:2001:i:4:p:361-374