EconPapers    
Economics at your fingertips  
 

Variable precision rough set theory and data discretisation: an application to corporate failure prediction

Malcolm J. Beynon and Michael Peel

Omega, 2001, vol. 29, issue 6, 561-576

Abstract: Since the seminal work of Pawlak (International Journal of Information and Computer Science, 11 (1982) 341-356) rough set theory (RST) has evolved into a rule-based decision-making technique. To date, however, relatively little empirical research has been conducted on the efficacy of the rough set approach in the context of business and finance applications. This paper extends previous research by employing a development of RST, namely the variable precision rough sets (VPRS) model, in an experiment to predict between failed and non-failed UK companies. It also utilizes the FUSINTER discretisation method which neglates the influence of an 'expert' opinion. The results of the VPRS analysis are compared to those generated by the classical logit and multivariate discriminant analysis, together with more closely related non-parametric decision tree methods. It is concluded that VPRS is a promising addition to existing methods in that it is a practical tool, which generates explicit probabilistic rules from a given information system, with the rules offering the decision maker informative insights into classification problems.

Keywords: Data; mining; Failure; prediction; FUSINTER; data; discretisation; Rough; set; theory; Variable; precision; rough; set; theory (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(01)00045-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:29:y:2001:i:6:p:561-576

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:29:y:2001:i:6:p:561-576