Identifying non-competitive bids in construction contract auctions
Martin Skitmore
Omega, 2002, vol. 30, issue 6, 443-449
Abstract:
Construction contract auctions are characterised by (1) anticipated high outliers due to the presence of non-competitive bids, (2) very small samples and (3) uncertainty of the appropriate underlying density function model of the bids. This paper describes the simultaneous identification of high outliers and density function by systematically identifying and removing candidate (high) outliers and examining the composite goodness-of-fit of the resulting reduced samples with the normal and lognormal density functions. Six different identification strategies are tested empirically by application, both independently and in pooled form, to several sets of auction data gathered from around the world. The results indicate the normal density to be the most appropriate model and a multiple of the auction standard deviation to be the best identification strategy.
Keywords: Construction; Contract; Auctions; Non-competitive; bids; Outliers; Goodness-of-fit; Small; samples (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(02)00057-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:30:y:2002:i:6:p:443-449
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().