Proximal proper efficiency in set-valued optimization
Arora Ruchi and
C.S. Lalitha
Omega, 2005, vol. 33, issue 5, 407-411
Abstract:
In this paper, we introduce the concept of cone semilocal convex and cone semilocal convexlike set-valued maps and obtain characterization of these maps in terms of locally star-shaped sets. We derive an alternative theorem involving cone semilocal convexlike set-valued maps under the assumption of closedness of the translation of the image set of the map by the cone under consideration. We introduce proximal proper efficiency for a set-valued optimization problem in finite-dimensional spaces and obtain certain scalarization and Lagrange multiplier theorems. In the end, we consider a Lagrange form of dual and establish weak and strong duality theorems.
Keywords: Set-valued; optimization; Proximal; proper; efficiency; Cone; semilocal; convexlikeness; Lagrange; dual (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00099-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:33:y:2005:i:5:p:407-411
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().