A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns
Hokey Min,
Hyun Jeung Ko and
Chang Seong Ko
Omega, 2006, vol. 34, issue 1, 56-69
Abstract:
Traditionally, product returns have been viewed as an unavoidable cost of doing business, forfeiting any chance of cost savings. As cost pressures continue to mount in this era of economic downturns, a growing number of firms have begun to explore the possibility of managing product returns in a more cost-efficient manner. However, few studies have addressed the problem of determining the number and location of centralized return centers (i.e., reverse consolidation points) where returned products from retailers or end-customers were collected, sorted, and consolidated into a large shipment destined for manufacturers' or distributors' repair facilities. To fill the void in such a line of research, this paper proposes a nonlinear mixed-integer programming model and a genetic algorithm that can solve the reverse logistics problem involving product returns. The usefulness of the proposed model and algorithm was validated by its application to an illustrative example dealing with products returned from online sales.
Keywords: Reverse; logistics; Location-allocation; Genetic; algorithm (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (50)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00115-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:34:y:2006:i:1:p:56-69
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().