Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment constraints
Jeng-Fung Chen and
Tai-Hsi Wu
Omega, 2006, vol. 34, issue 1, 81-89
Abstract:
This research deals with scheduling jobs on unrelated parallel machines with auxiliary equipment constraints. Each job has a due date and requires a single operation. A setup for dies is incurred if there is a switch from processing one type of job to another type. For a die type, the number of dies is limited. Due to the attributes of the machines and the fitness of dies to each, the processing time for a job depends on the machine on which the job is processed, each job being restricted to processing on certain machines. In this paper, an effective heuristic based on threshold-accepting methods, tabu lists, and improvement procedures is proposed to minimize total tardiness. An extensive experiment is conducted to evaluate the computational characteristics of the proposed heuristic. Computational experiences demonstrate that the proposed heuristic is capable of obtaining optimal solutions for small-sized problems, and significantly outperforms an ATCS procedure and a simulated annealing method for problems in larger sizes.
Keywords: Setup; Threshold-accepting; method; Total; tardiness; Unrelated; parallel; machine (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00119-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:34:y:2006:i:1:p:81-89
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().