EconPapers    
Economics at your fingertips  
 

Two new robust genetic algorithms for the flowshop scheduling problem

Rubén Ruiz, Concepciøn Maroto and Javier Alcaraz

Omega, 2006, vol. 34, issue 5, 461-476

Abstract: The flowshop scheduling problem (FSP) has been widely studied in the literature and many techniques for its solution have been proposed. Some authors have concluded that genetic algorithms are not suitable for this hard, combinatorial problem unless hybridization is used. This work proposes new genetic algorithms for solving the permutation FSP that prove to be competitive when compared to many other well known algorithms. The optimization criterion considered is the minimization of the total completion time or makespan (Cmax). We show a robust genetic algorithm and a fast hybrid implementation. These algorithms use new genetic operators, advanced techniques like hybridization with local search and an efficient population initialization as well as a new generational scheme. A complete evaluation of the different parameters and operators of the algorithms by means of a Design of Experiments approach is also given. The algorithm's effectiveness is compared against 11 other methods, including genetic algorithms, tabu search, simulated annealing and other advanced and recent techniques. For the evaluations we use Taillard's well known standard benchmark. The results show that the proposed algorithms are very effective and at the same time are easy to implement.

Keywords: Flowshop; Genetic; algorithms; Local; search (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(05)00017-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:34:y:2006:i:5:p:461-476

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:34:y:2006:i:5:p:461-476