A hybrid approach to constrained evolutionary computing: Case of product synthesis
Wen-Yau Liang and
Chun-Che Huang
Omega, 2008, vol. 36, issue 6, 1072-1085
Abstract:
Evolutionary computing (EC) is comprised of techniques involving evolutionary programming, evolution strategies, genetic algorithms (GA), and genetic programming. It has been widely used to solve optimization problems for large scale and complex systems. However, when insufficient knowledge is incorporated, EC is less efficient in terms of searching for an optimal solution. In addition, the GA employed in previous literature is modeled to solve one problem exactly. The GA needs to be redesigned, at a cost, for it to be applied to another problem. Due to these two reasons, this paper develops a generic GA incorporating knowledge extracted from the rough set theory. The advantages of the proposed solution approach include: (i) solving problems that can be decomposed into functional requirements, and (ii) improving the performance of the GA by reducing the domain range of initial population and constraining crossover using the rough set theory. The solution approach is exemplified by solving the problem of product synthesis, where there is a conflict between performance and cost. Manufacturing or assembling a product of high performance and quality at a low cost is critical for a company to maximize its advantages. Based on our experimental results, this approach has shown great promise and has reduced costs when the GA is in processing.
Keywords: Evolutionary; computing; Genetic; algorithm; Rough; set; Product; synthesis (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(06)00048-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:36:y:2008:i:6:p:1072-1085
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().