Analysis of a two-echelon inventory system with returns
Subrata Mitra
Omega, 2009, vol. 37, issue 1, 106-115
Abstract:
Product take-back and recovery activities have grown in recent times as a consequence of stringent government regulations and increased customer awareness of environmental pollution. Inventory management in the context of product returns has drawn the attention of many researchers. However, the inherent complexity of the system with uncertain returns makes the analysis of the system extremely difficult. So far, the literature on this type of system is mostly limited to single echelons. The few papers available in literature on multi-echelon systems with returns base their analyses on simplified assumptions such as non-existence or non-relevance of set-up and holding costs at different levels. In this paper, we relax these assumptions and consider a two-echelon system with returns under more generalized conditions. We develop a deterministic model as well as a stochastic model under continuous review for the system, and provide numerical examples for illustration.
Keywords: Two-echelon; inventory; Product; recovery; Reverse; logistics; Continuous; review (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(06)00131-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:37:y:2009:i:1:p:106-115
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().