Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem
Eva Vallada and
Rubén Ruiz
Omega, 2010, vol. 38, issue 1-2, 57-67
Abstract:
In this work three genetic algorithms are presented for the permutation flowshop scheduling problem with total tardiness minimisation criterion. The algorithms include advanced techniques like path relinking, local search and a procedure to control the diversity of the population. We also include a speed up procedure in order to reduce the computational effort needed for the local search technique, which results in large CPU time savings. A complete calibration of the different parameters and operators of the proposed algorithms by means of a design of experiments approach is also given. We carry out a comparative evaluation with the best methods that can be found in the literature for the total tardiness objective, and with adaptations of other state-of-the-art methods originally proposed for other objectives, mainly makespan. All the methods have been implemented with and without the speed up procedure in order to test its effect. The results show that the proposed algorithms are very effective, outperforming the remaining methods of the comparison by a considerable margin.
Keywords: Flowshop; Tardiness; Genetic; algorithm; Path; relinking; Diversity (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(09)00032-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:38:y:2010:i:1-2:p:57-67
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().