A note on a makespan minimization problem with a multi-ability learning effect
Adam Janiak and
RadosLaw Rudek
Omega, 2010, vol. 38, issue 3-4, 213-217
Abstract:
In the scheduling literature the learning effect is perceived as a process of acquiring experience by a processor (e.g. a human worker) in one ability. However, in many real-life problems the processor, during execution of jobs, increases its experience in different, very often independent, abilities (skills). In consequence, it causes the overall growth of the efficiency of the processor. According to this observation, in this paper, we bring into scheduling a new approach called multi-ability learning that generalizes the existing ones and models more precisely real-life settings. On this basis, we focus on a makespan minimization problem with the proposed learning model and provide optimal polynomial time algorithms for its special cases, which often occur in management.
Keywords: Scheduling; Learning; effect; Single; machine; Computational; complexity (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(09)00067-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:38:y:2010:i:3-4:p:213-217
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).