DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment
I.M. Premachandra,
Yao Chen and
John Watson ()
Omega, 2011, vol. 39, issue 6, 620-626
Abstract:
Using an additive super-efficiency data envelopment analysis (DEA) model, this paper develops a new assessment index based on two frontiers for predicting corporate failure and success. The proposed approach is applied to a random sample of 1001 firms, which is composed of 50 large US bankrupt firms randomly selected from Altman's bankruptcy database and 901 healthy matching firms. This sample represents the largest firms that went bankrupt over the period 1991-2004 and represents a full spectrum of industries. Our findings demonstrate that the DEA model is relatively weak in predicting corporate failures compared to healthy firm predictions, and the assessment index improves this weakness by giving the decision maker various options to achieve different precision levels of bankrupt, non-bankrupt, and total predictions.
Keywords: Data; envelopment; analysis; (DEA); Bankruptcy; Corporate; failure; Corporate; success; Bankruptcy (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305-0483(11)00005-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:39:y:2011:i:6:p:620-626
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().