Single machine scheduling with general positional deterioration and rate-modifying maintenance
Kabir Rustogi and
Vitaly A. Strusevich
Omega, 2012, vol. 40, issue 6, 791-804
Abstract:
We present polynomial-time algorithms for single machine problems with generalized positional deterioration effects and machine maintenance. The decisions should be taken regarding possible sequences of jobs and on the number of maintenance activities to be included into a schedule in order to minimize the overall makespan. We deal with general non-decreasing functions to represent deterioration rates of job processing times. Another novel extension of existing models is our assumption that a maintenance activity does not necessarily fully restore the machine to its original perfect state. In the resulting schedules, the jobs are split into groups, a particular group to be sequenced after a particular maintenance period, and the actual processing time of a job is affected by the group that job is placed into and its position within the group.
Keywords: Scheduling; Maintenance; Sequencing; Deterioration; Single machine; Assignment problem (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048311001794
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:40:y:2012:i:6:p:791-804
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2011.12.007
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().