EconPapers    
Economics at your fingertips  
 

Clustering categories in support vector machines

Emilio Carrizosa, Amaya Nogales-Gómez and Dolores Romero Morales

Omega, 2017, vol. 66, issue PA, 28-37

Abstract: The support vector machine (SVM) is a state-of-the-art method in supervised classification. In this paper the Cluster Support Vector Machine (CLSVM) methodology is proposed with the aim to increase the sparsity of the SVM classifier in the presence of categorical features, leading to a gain in interpretability. The CLSVM methodology clusters categories and builds the SVM classifier in the clustered feature space. Four strategies for building the CLSVM classifier are presented based on solving: the SVM formulation in the original feature space, a quadratically constrained quadratic programming formulation, and a mixed integer quadratic programming formulation as well as its continuous relaxation. The computational study illustrates the performance of the CLSVM classifier using two clusters. In the tested datasets our methodology achieves comparable accuracy to that of the SVM in the original feature space, with a dramatic increase in sparsity.

Keywords: Support vector machine; Categorical features; Classifier sparsity; Clustering; Quadratically constrained programming; 0-1 programming (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048316000098
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:66:y:2017:i:pa:p:28-37

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2016.01.008

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:66:y:2017:i:pa:p:28-37