Scheduling and performance analysis under a stochastic model for electric vehicle charging stations
Jerim Kim,
Sung-Yong Son,
Jung-Min Lee and
Hyung-Tae Ha
Omega, 2017, vol. 66, issue PB, 278-289
Abstract:
Wide-spread infrastructures for electric vehicle battery charging stations are essential in order to significantly increase the implementation of electric vehicles (EVs) in the foreseeable future. Therefore, we propose a stochastic model and charge scheduling methods for an EV battery charging system. We utilize a flexible Poisson process with a hidden Markov chain for modeling the complexity of the time-varying behavior of the EV stream into the system. Relevant random factors and constraints, which include parking times, requested amounts of electricity, the number of parking lots (charging facilities), and maximal demand level, are considered within the proposed stochastic model. Performance measures for the proposed charge scheduling are analytically derived by obtaining stationary distributions of states concerning the number of inbound EVs, waiting time distributions, and the joint distributions of parking time and electricity charged during random parking times.
Keywords: Electric vehicles; Battery charging station; Stochastic modeling; Charge scheduling; Markov-modulated Poisson process; Performance measures (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048316000165
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:66:y:2017:i:pb:p:278-289
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2015.11.010
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().