Markov and renewal models for total manpower system
Shelby Stewman
Omega, 1978, vol. 6, issue 4, 341-351
Abstract:
This study compares the predictive utility of three stochastic models for both total manpower system and cohort personnel movement. The models are all discrete time versions, including a first order Markov chain, a Markov chain with duration of stay (semi-Markov) and a vacancy model having both renewal and Markov properties. The analysis covers a continuous 20 year period: 1950-1970 for a state police (U.S.A.) internal labor market. The simple Markov chain model is inadequate for long term cohort forecasts, but reasonably adequate for long term organizational forecasts. The semi-Markov model outperforms the simple Markov model for cohorts, but is surprisingly less accurate for the total organization. The heuristic information it portrays for the cohort is, however, quite informative. The best model for intermediate (5 year) and long term (10 year) forecasts in both cohort and organizational tests is the renewal type vacancy model. This finding is viewed as particularly important both in terms of empirical performance, which we expect can be improved due to the initial simplifying assumptions used, and in terms of further theoretical explication of the underlying causal process since internal staff flows are conceptualized as contingent on the opportunities available.
Date: 1978
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0305-0483(78)90007-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:6:y:1978:i:4:p:341-351
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().