A memetic differential evolution algorithm for energy-efficient parallel machine scheduling
Xueqi Wu and
Ada Che
Omega, 2019, vol. 82, issue C, 155-165
Abstract:
This paper considers an energy-efficient bi-objective unrelated parallel machine scheduling problem to minimize both makespan and total energy consumption. The parallel machines are speed-scaling. To solve the problem, we propose a memetic differential evolution (MDE) algorithm. Since the problem involves assigning jobs to machines and selecting an appropriate processing speed level for each job, we characterize each individual by two vectors: a job-machine assignment vector and a speed vector. To accelerate the convergence of the algorithm, only the speed vector of each individual evolves and a list scheduling heuristic is applied to derive its job-machine assignment vector based on its speed vector. To further enhance the algorithm, we propose efficient speed adjusting and job-machine swap heuristics and integrate them into the algorithm as a local search approach by an adaptive meta-Lamarckian learning strategy. Computational results reveal that the incorporation of list scheduling heuristic and local search greatly strengthens the algorithm. Computational experiments also show that the proposed MDE algorithm outperforms SPEA-II and NSGA-II significantly.
Keywords: Energy-efficient scheduling; Unrelated parallel machines; Memetic algorithm; Differential evolution; List scheduling (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048317307922
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:82:y:2019:i:c:p:155-165
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2018.01.001
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().