EconPapers    
Economics at your fingertips  
 

Tighter MIP models for Barge Container Ship Routing

Laurent Alfandari, Tatjana Davidović, Fabio Furini, Ivana Ljubić, Vladislav Maraš and Sébastien Martin

Omega, 2019, vol. 82, issue C, 38-54

Abstract: This paper addresses the problem of optimal planning of a liner service for a barge container shipping company. Given estimated weekly demands between pairs of ports, our goal is to determine the subset of ports to be called and the amount of containers to be shipped between each pair of ports, so as to maximize the profit of the shipping company. In order to save possible leasing or storage costs of empty containers at the respective ports, our approach takes into account the repositioning of empty containers. The line has to follow the outbound–inbound principle, starting from the port at the river mouth. We propose a novel integrated approach in which the shipping company can simultaneously optimize the route (along with repositioning of empty containers), the choice of the final port, length of the turnaround time and the size of its fleet. To solve this problem, a new mixed integer programming model is proposed. On the publicly available set of benchmark instances for barge container routing, we demonstrate that this model provides very tight dual bounds and significantly outperforms the existing approaches from the literature for splittable demands.

Keywords: Integer linear programming; Inland waterway transport; Liner shipping network design; Empty container repositioning; Barge Container Ship Routing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048317305704
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:82:y:2019:i:c:p:38-54

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2017.12.002

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:82:y:2019:i:c:p:38-54