EconPapers    
Economics at your fingertips  
 

A two-stage stochastic programming approach for identifying optimal postponement strategies in supply chains with uncertain demand

Christoph Weskamp, Achim Koberstein, Frank Schwartz, Leena Suhl and Stefan Voß

Omega, 2019, vol. 83, issue C, 123-138

Abstract: In the course of globalization, applying mass-customization strategies has led to a high diversity of variants in many economic sectors. Thus, customer demands are often less predictable, and handling increasing inventory stocks as well as avoiding shortfalls have become particularly important. All these complexity drivers result in higher supply chain risks. Postponement strategies have been proposed as a suitable approach to address these problems. Although the concept of postponement and its impact on the supply chain are theoretically well discussed, optimally configuring the entire production and distribution activities is still challenging. We present a two-stage stochastic mixed-integer linear programming model, which comprises an integrated production and distribution planning approach, and considers postponement concepts. In comparison to earlier approaches that examine postponement strategies, our model supports the decision maker under demand uncertainty and considers lead times, penalty costs for shortfalls, as well as inventory-keeping decisions over a tactical planning horizon. This allows an integrated investigation of both form and logistics postponement concepts. Moreover, we consider the decision maker’s risk attitude identifying non-dominated profitable and risk-averse strategies. We illustrate the benefits of the model by using a case study from the apparel industry, and present the results of a sensitivity analysis with respect to varying demand uncertainty and demand correlations as well as different preferences regarding risk aversion. Furthermore, we carry out performance and quality benchmarks and compare the results of a standard mixed-integer linear programming solver, a parallel nested Benders approach and a sample average approximation technique.

Keywords: Decision making; Two-stage stochastic programming; Supply chain; Risk; Optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048318301646
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:83:y:2019:i:c:p:123-138

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2018.02.008

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:83:y:2019:i:c:p:123-138