Empirical safety stock estimation based on kernel and GARCH models
Juan R. Trapero,
Manuel Cardós and
Nikolaos Kourentzes
Omega, 2019, vol. 84, issue C, 199-211
Abstract:
Supply chain risk management has drawn the attention of practitioners and academics alike. One source of risk is demand uncertainty. Demand forecasting and safety stock levels are employed to address this risk. Most previous work has focused on point demand forecasting, given that the forecast errors satisfy the typical normal i.i.d. assumption. However, the real demand for products is difficult to forecast accurately, which means that—at minimum—the i.i.d. assumption should be questioned. This work analyzes the effects of possible deviations from the i.i.d. assumption and proposes empirical methods based on kernel density estimation (non-parametric) and GARCH(1,1) models (parametric), among others, for computing the safety stock levels. The results suggest that for shorter lead times, the normality deviation is more important, and kernel density estimation is most suitable. By contrast, for longer lead times, GARCH models are more appropriate because the autocorrelation of the variance of the forecast errors is the most important deviation. In fact, even when no autocorrelation is present in the original demand, such autocorrelation can be present as a consequence of the overlapping process used to compute the lead time forecasts and the uncertainties arising in the estimation of the parameters of the forecasting model. Improvements are shown in terms of cycle service level, inventory investment and backorder volume. Simulations and real demand data from a manufacturer are used to illustrate our methodology.
Keywords: Forecasting; Safety stock; Risk; Supply chain; Prediction intervals; Volatility; Kernel density estimation; GARCH (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048316306090
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:84:y:2019:i:c:p:199-211
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2018.05.004
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().