Brain imaging and forecasting: Insights from judgmental model selection
Weiwei Han,
Xun Wang,
Fotios Petropoulos and
Jing Wang
Omega, 2019, vol. 87, issue C, 1-9
Abstract:
In this article, we shed light on the differences between two judgmental forecasting approaches for model selection – forecast selection and pattern identification – with regard to their forecasting performance and underlying cognitive processes. We designed a laboratory experiment using real-life time series as stimuli to record subjects’ selections as well as their brain activity by means of electroencephalography (EEG). We found that their cognitive load, measured by the amplitude of parietal P300, can be effectively used as a neurological indicator of identification and forecast accuracy. As a result, judgmental forecasting based on pattern identification outperforms forecast selection. Time series with low trendiness and high noisiness have low forecasting accuracy because of the high cognitive load induced.
Keywords: Forecasting; Judgment; EEG; Laboratory experiment; Decision making; Cognitive process (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048317309957
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:87:y:2019:i:c:p:1-9
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2018.11.015
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().