EconPapers    
Economics at your fingertips  
 

Robust goal programming for multi-objective optimization of data-driven problems: A use case for the United States transportation command's liner rate setting problem

Robert W. Hanks, Brian J. Lunday and Jeffery D. Weir

Omega, 2020, vol. 90, issue C

Abstract: Robust goal programming (RGP) is a recently developed, powerful new optimization modeling technique that conjoins two widely accepted operations research disciplines: robust optimization (RO) and goal programming (GP). In lieu of applying a probability distribution over possible outcomes, an approach considered by stochastic programming, RO utilizes uncertainty sets to account for data uncertainty. This characteristic of RO is an important attribute because identifying such a probability distribution is challenging, at best. Given this RO context, RGP additionally incorporates GP, traditionally a deterministic procedure, to address optimization problems having multiple objectives. As such, RGP has potential to help address a wide array of data-driven applications, ranging from financial management to engineering design.

Keywords: Robust optimization; Goal programming; Robust goal programming; Decision making under risk (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048317306874
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:90:y:2020:i:c:s0305048317306874

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2018.10.013

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:90:y:2020:i:c:s0305048317306874