EconPapers    
Economics at your fingertips  
 

LASSO variable selection in data envelopment analysis with small datasets

Chia-Yen Lee and Jia-Ying Cai

Omega, 2020, vol. 91, issue C

Abstract: The curse of dimensionality problem arises when a limited number of observations are used to estimate a high-dimensional frontier, in particular, by data envelopment analysis (DEA). The study conducts a data generating process (DGP) to argue the typical “rule of thumb” used in DEA, e.g. the required number of observations should be at least larger than twice of the number of inputs and outputs, is ambiguous and will produce large deviations in estimating the technical efficiency. To address this issue, we propose a Least Absolute Shrinkage and Selection Operator (LASSO) variable selection technique, which is usually used in data science for extracting significant factors, and combine it in a sign-constrained convex nonparametric least squares (SCNLS), which can be regarded as DEA estimator. Simulation results demonstrate that the proposed LASSO-SCNLS method and its variants provide useful guidelines for the DEA with small datasets.

Keywords: Data envelopment analysis; Feature selection; Lasso; Efficiency estimation; Convex nonparametric least squares (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048318305759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:91:y:2020:i:c:s0305048318305759

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2018.12.008

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:91:y:2020:i:c:s0305048318305759