An exact method for shrinking pivot tables
Marco A. Boschetti,
Matteo Golfarelli and
Simone Graziani
Omega, 2020, vol. 93, issue C
Abstract:
Pivot tables are one of the most popular tools for data visualization in both business and research applications. Although they are in general easy to use, their comprehensibility becomes progressively lower when the quantity of cells to be visualized increases (i.e., information flooding problem). Pivot tables are largely adopted in OLAP, the main approach to multidimensional data analysis. To cope with the information flooding problem in OLAP, the shrink operation enables users to balance the size of query results with their approximation, exploiting the presence of multidimensional hierarchies. The only implementation of the shrink operator proposed in the literature is based on a greedy heuristic that, in many cases, is far from reaching a desired level of effectiveness.
Keywords: OLAP; Integer linear programming; Set partitioning; Lagrangian relaxation; Pricing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048317310666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:93:y:2020:i:c:s0305048317310666
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2019.03.002
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().