EconPapers    
Economics at your fingertips  
 

Surgical scheduling under uncertainty by approximate dynamic programming

Thiago A.O. Silva and Mauricio C. de Souza

Omega, 2020, vol. 95, issue C

Abstract: Surgical scheduling consists of selecting surgeries to be performed within a day, while jointly assigning operating rooms, starting times and the required resources. Patients can be elective or emergency/urgent. The scheduling of surgeries in an operating theatre with common resources to emergency or urgent and elective cases is highly subject to uncertainties not only on the duration of an intervention but mainly on the arrival of emergency or urgent cases. At the beginning of the day we are given a candidate set of elective surgeries with and an expected duration and a time window the surgery must start, but the expected duration and the time window of an emergency or urgent case become known when the surgery arrives. The day is divided into decision stages. Due to the dynamic nature of the problem, at the beginning of each stage the planner can make decisions taking into account the new information available. Decisions can be to schedule arriving surgeries, and to reschedule or cancel surgeries not started yet. The objective is to minimize the total expected cost composed of terms related to refusing arriving surgeries, to canceling scheduled surgeries, and to starting surgeries out of their time window. We address the problem with an approximate dynamic programming approach embedding an integer programming formulation to support decision making. We propose a dynamic model and an approximate policy iteration algorithm making use of basis functions to capture the impact of decisions to the future stages. Computational experiments have shown with statistical significance that the proposed algorithm outperforms a lookahead reoptimization approach.

Keywords: Surgical scheduling; Scheduling under uncertainty; Approximate dynamic programming; Approximate policy iteration algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048318309381
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:95:y:2020:i:c:s0305048318309381

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2019.05.002

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2021-06-30
Handle: RePEc:eee:jomega:v:95:y:2020:i:c:s0305048318309381