Consumer preference analysis: A data-driven multiple criteria approach integrating online information
Mengzhuo Guo,
Xiuwu Liao,
Jiapeng Liu and
Qingpeng Zhang
Omega, 2020, vol. 96, issue C
Abstract:
Multiple criteria approaches can assist the product manager to know the consumer preferences in the context of e-commerce. Consumer preference analysis explains what aspects of a product affect and how they affect a consumer’s purchasing decision. This issue plays an important role in e-commerce platforms from its relevance in marketing decisions such as advertisements, recommendations and promotions. In this regard, we propose a data-driven multiple criteria decision aiding (MCDA) approach to integrate online information, such as explicit (e.g., reviews and ratings) and implicit (e.g., clicks and purchases) feedback from consumers. However, MCDA approaches present a critical challenge that even an experienced product manager could find it difficult to pre-define the criteria on which a product is evaluated. To address this issue, our proposed approach first utilizes text-mining techniques to assist the product manager identify the criteria, and then determines and collects the relative importance of the criteria and their values. Given the criteria information, we use a sampling process to provide two indices, the consumer preference index and rank acceptability index. The first index helps in prioritizing the pairwise comparisons of products, while the second one helps in deriving a default ranking list for first-time-registered consumers. We record the products viewed by consumers and generate their preference information in the form of pairwise comparisons for analyses within an aggregation-disaggregation paradigm. We also provide a representative value function to help the product manager gain insight into the preferences. Finally, we describe how a real-world application including the product manager and consumers exploits the proposed approach on an e-commerce platform to take a large step toward aiding more realistic and data-driven multiple criteria decision making.
Keywords: Multiple criteria decision making; Preference analysis; Preference modeling; E-commerce; Online reviews (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048318311654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:96:y:2020:i:c:s0305048318311654
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2019.05.010
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().