Feature Selection in Data Envelopment Analysis: A Mathematical Optimization approach
Sandra Benítez-Peña,
Peter Bogetoft and
Dolores Romero Morales
Omega, 2020, vol. 96, issue C
Abstract:
This paper proposes an integrative approach to feature (input and output) selection in Data Envelopment Analysis (DEA). The DEA model is enriched with zero-one decision variables modelling the selection of features, yielding a Mixed Integer Linear Programming formulation. This single-model approach can handle different objective functions as well as constraints to incorporate desirable properties from the real-world application. Our approach is illustrated on the benchmarking of electricity Distribution System Operators (DSOs). The numerical results highlight the advantages of our single-model approach provide to the user, in terms of making the choice of the number of features, as well as modeling their costs and their nature.
Keywords: Benchmarking; Data Envelopment Analysis; Feature Selection; Mixed Integer Linear Programming (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048318312131
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:96:y:2020:i:c:s0305048318312131
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2019.05.004
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().