A data-driven prediction approach for sports team performance and its application to National Basketball Association
Yongjun Li,
Lizheng Wang and
Feng Li
Omega, 2021, vol. 98, issue C
Abstract:
Performance prediction is an issue of vital importance in many real managerial applications. This paper will propose a prediction approach for sports team performance based on data envelopment analysis (DEA) methodology and data-driven technique. The proposed approach includes two steps: The first one conducts a multivariate logistic regression analysis to examine the relationship between the winning probability and game outcomes at the team-level. The other one addresses a DEA-based player portfolio efficiency analysis to optimally choose players and plan the playing time among players in the court. The second step aims to use players’ and team's historical data to train the future and obtain the most promising outcomes in terms of their average inefficiency status. Finally, we apply the proposed performance prediction approach to National Basketball Association and take Golden State Warriors as an example to illustrate its usefulness and efficacy. We obtain the prediction results for the 2015–16 regular season based on a four-season dataset from the 2011–12 season to the 2014–15 season. Further, we carry out multiple experiments to provide deeper discussion and analysis on according prediction results. It shows that the DEA-based data-driven approach can predict the sports team performance very well and can also provide interesting insights into the performance prediction problem.
Keywords: Data envelopment analysis (DEA); Performance prediction; Data-driven; Sports team; National basketball association (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048319302002
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:98:y:2021:i:c:s0305048319302002
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2019.102123
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().