EconPapers    
Economics at your fingertips  
 

Identification of land-use characteristics using bicycle sharing data: A deep learning approach

Jiahui Zhao, Wei Fan and Xuehao Zhai

Journal of Transport Geography, 2020, vol. 82, issue C

Abstract: Extensive research has shown that urban land-use characteristics, including resident, work, consumption, transit, etc., are significantly interrelated with travel behaviors and travel demands. Many research efforts have been made to evaluate the impact of land use planning or policies on travel behavior, however, few studies are able to quantitatively measure the land-use characteristics based on the data of travel behaviors or travel demand. In this paper, a new hybrid model that combines time series feature extraction and deep neural network is proposed to identify regional land use characteristics and quantify land use intensity using ridership data of bicycle sharing. This method consists of four main parts: (i) A set of land-use characteristic labels are evaluated based on planning and Geographic Information System (GIS) data. (ii) An ensemble clustering method is used to determine the segmentation points of ridership time series. (iii) The statistical characteristics of the segmented time series are extracted and used as input to the neural network. (iv) A deep neural network is established and trained based on the processed ridership features and land-use labels. In terms of data collection, ridership data of the bicycle-sharing parking spots and land-use planning data are obtained from bicycle-sharing system and planning department in San Francisco Bay Area, California U.S.A., respectively. The test results show that this approach has high accuracy for identifying land-use characteristics based on several standard evaluation measures and that the identification distribution can be well explained. The extension results further prove that the model can be applied to effectively analyze the main land-use characteristics of the region although the identification results may become unstable after 3–4 months.

Keywords: Land-use characteristics; Ensemble clustering; GIS; Deep neural network (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0966692318309232

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692318309232

DOI: 10.1016/j.jtrangeo.2019.102562

Access Statistics for this article

Journal of Transport Geography is currently edited by Frank Witlox

More articles in Journal of Transport Geography from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692318309232