EconPapers    
Economics at your fingertips  
 

An analysis of future platinum resources, emissions and waste streams using a system dynamic model of its intentional and non-intentional flows and stocks

Ayman Elshkaki

Resources Policy, 2013, vol. 38, issue 3, 241-251

Abstract: Platinum is increasingly used intentionally and non-intentionally in several applications. This has raised the concern about its future resources, emissions and losses during its life cycle. On the one hand, increasing platinum emissions might affect human health. On the other hand, the accumulated platinum in mineral waste, soil, landfill sites and construction materials as a result of the emissions, losses and the utilization of secondary materials can be seen as potential resources for platinum. This paper is aimed at (1) analyzing the long term impacts of the use of platinum intentionally and non-intentionally on its future demand and supply, release to the environment and accumulation in mineral waste, soil, landfill sites and construction materials and (2) quantifying the amount of platinum in secondary materials that would be available for platinum future supply. The analysis is carried out on a global level using a system dynamic model of platinum intentional and non-intentional flows and stocks. The analysis is based on four scenarios for the introduction of fuel cell vehicles (FCVs). The results show that platinum demand is increasing overtime in all scenarios at different rates and its identified resources are expected to deplete before the end of the century with or without the introduction of FCVs. The release of platinum to the environment and the accumulation in soil are expected to decrease when conventional ICE vehicles is replaced by FCVs. The amount of platinum accumulated in mineral waste, soil, landfill sites and construction materials by the time platinum is depleted are more than double its identified resources and would be potential resources for platinum that are available in different parts of the world. The methodology presented in this paper can be used in the assessment of other technologies and other metals.

Keywords: Dynamic modeling; Platinum; Fuel Cells; Resources; Emissions; Secondary materials (search for similar items in EconPapers)
JEL-codes: L72 O13 Q31 (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301420713000342
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jrpoli:v:38:y:2013:i:3:p:241-251

DOI: 10.1016/j.resourpol.2013.04.002

Access Statistics for this article

Resources Policy is currently edited by R. G. Eggert

More articles in Resources Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jrpoli:v:38:y:2013:i:3:p:241-251