EconPapers    
Economics at your fingertips  
 

A generalized model for assessing and intensifying the recycling of metal-bearing industrial waste: A new approach to the resource policy of manganese industry in Georgia

Gigo Jandieri

Resources Policy, 2022, vol. 75, issue C

Abstract: A generalized model for assessing the overall, techno-economic-ecological efficiency of recycling metal-bearing technogeneous resources has been developed, based on a mathematical model for analyzing the break-even point, specially improved for this purpose. An algorithm for theoretical calculations has been compiled, which also incorporates a sequence of techno-organizational operations for maximizing the efficiency of the recycling system. As a particular case, an example of assessing the effectiveness and the possibility of intensifying recycling of manufacturing waste of the manganese industry of Georgia was considered. It is shown that the intensification of the internal industrial recycling of manganese-bearing wastes is associated with the need for their preliminary treatment, bringing to the condition necessary for break-even processing. Through theoretical-computational analysis of the recycling efficiency index (REI), it is determined that in the case of pyrometallurgical processing, the condition of break-even is the presence of manganese in the recycled raw material in the amount not less than 24%. In the case of hydrometallurgical processing, this threshold is reduced up to 7%. Consequently, resources that satisfy these conditions or can satisfy them after pretreatment should be classified as suitable for recycling and included in the special state register of metal-bearing technogenic deposits. Only that part of industrial waste, in which it is technically impossible or economically unprofitable to provide the specified threshold concentrations, can be disposed of in other industries. The proposed approach to assessing and intensifying the efficiency of recycling will make it possible to significantly expand the resource base of metallurgical production in Georgia. Herewith, on average, the degree of beneficial use of manganese will be increased by 45–50%. Depending on the quality of currently consumed manganese concentrates (Mn 48-28%) the degree of reduction of their consumption rate will reach 30–60%. This will extend the life cycle of the Chiatura manganese mine by 25–30 years. Harmful anthropogenic impact on the environment will be reduced by 3.4–3.5 times.

Keywords: Metal-bearing secondary resources; Metal reduction and extraction; Ore substitution index; Recycling efficiency index; Recycling intensification algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301420721004700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721004700

DOI: 10.1016/j.resourpol.2021.102462

Access Statistics for this article

Resources Policy is currently edited by R. G. Eggert

More articles in Resources Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721004700