A new secondary decomposition-reconstruction-ensemble approach for crude oil price forecasting
Jingyun Sun,
Panpan Zhao and
Shaolong Sun
Resources Policy, 2022, vol. 77, issue C
Abstract:
This study proposes a new method for crude oil future price forecasting. The original crude oil futures price series is decomposed into a series of sub-sequences using the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) method, and the permutation entropy (PE) method is employed to reconstruct these sub-sequences into high-frequency, low-frequency, and trend components. Using the kernel extreme learning machine (KELM) optimised by the chaotic sparrow search algorithm (CSSA), the low-frequency component and trend component are predicted. However, the high-frequency component is decomposed secondary to the empirical mode decomposition (EMD) method, and the PE and CSSA-KELM models are employed again to obtain the linear integrating prediction result for the high-frequency component. Finally, the forecasting results of the high-frequency, low-frequency, and trend components are nonlinearly integrated with the CSSA-KELM model, and the final forecasting value for crude oil futures prices is obtained. To verify the effectiveness of the proposed model, we empirically forecast the Brent and WTI crude oil futures prices. The empirical results show that the approach proposed in this study improves forecasting accuracy compared to other benchmark models and has good robustness.
Keywords: Crude oil forecasting; Secondary decomposition; Permutation entropy; Chaotic sparrow search algorithm; Kernel extreme learning machine (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301420722002100
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722002100
DOI: 10.1016/j.resourpol.2022.102762
Access Statistics for this article
Resources Policy is currently edited by R. G. Eggert
More articles in Resources Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().