A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network
Geya Zhao,
Minggao Xue and
Li Cheng
Resources Policy, 2023, vol. 85, issue PB
Abstract:
WTI futures prices are impacted by supply, demand and a variety of financial factors, including U.S. dollar exchange rates, interest rates, market sentiment and related market linkages. The frequent changes in these factors cause WTI futures prices to fluctuate dramatically and complicate the trading decisions of investors and the policy-making of governments; consequently, accurate forecasting of WTI futures prices has become a topic of intense interest in the field of energy research. To thoroughly investigate the impact of various factors on crude oil prices, this paper introduces the self-attention mechanism and the spatial–temporal graph neural network Graph WaveNet (GWNet) to predict crude oil prices. The self-attention mechanism is employed to learn time-varying interactions between variables to tackle a problem where the graph structure is unknown. The graph convolution and the dilated causal convolution in GWNet capture the spatial and temporal dependencies, respectively. The empirical findings demonstrate that the proposed Graph WaveNet with Self-Attention (GWNet-Attn) robustly and significantly outperforms all baseline models in various prediction horizons and that the dollar index (USDX), LIBOR, and VIX have surpassed supply and demand as the most influential predictors of WTI futures prices.
Keywords: WTI futures prices; Multi-step forecasting; Self-attention mechanism; Spatial–temporal graph neural network; Dilated causal convolution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0301420723006670
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006670
DOI: 10.1016/j.resourpol.2023.103956
Access Statistics for this article
Resources Policy is currently edited by R. G. Eggert
More articles in Resources Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().