Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts
K.B. Lindberg,
S.J. Bakker and
I. Sartori
Utilities Policy, 2019, vol. 58, issue C, 63-88
Abstract:
Long-term forecasts of the aggregate electric load profile are crucial for grid investment decisions and energy system planning. With current developments in energy efficiency of new and renovated buildings, and the coupling of heating and electricity demand through heat pumps, the long-term load forecast cannot be based on its historic pattern anymore. This paper presents part of an on-going work aimed at improving forecasts of the electric load profile on a national level, based on a bottom-up approach. The proposed methodology allows to account for energy efficiency measures of buildings and introduction of heat pumps on the aggregated electric load profile. Based on monitored data from over 100 non-residential buildings from all over Norway, with hourly resolution, this paper presents panel data regression models for heat load and electric specific load separately. This distinction is crucial since it allows to consider future energy efficiency measures and substitution of heating technologies. The data set is divided into 7 building types, with two variants: regular and energy efficient. The load is dependent on hour of the day, outer temperature and type of day, such as weekday and weekend. The resulting parameter estimates characterize the energy signature for each building type and variant, normalized per floor area unit (m2). Hence, it is possible to generate load profiles for typical days, weeks and years, and make aggregated load forecasts for a given area, needing only outdoor temperature and floor areas as additional data inputs.
Keywords: Load profiles; Load forecast; Electric load; Heat load; Statistical analysis; Regression model (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0957178719300128
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:juipol:v:58:y:2019:i:c:p:63-88
DOI: 10.1016/j.jup.2019.03.004
Access Statistics for this article
Utilities Policy is currently edited by Beecher, Janice
More articles in Utilities Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().