Techno-economic analysis of a hybrid photovoltaic-wind-biomass-battery system for off-grid power in rural Guatemala
José Daniel Aceituno Dardon and
Hooman Farzaneh
Utilities Policy, 2024, vol. 88, issue C
Abstract:
Guatemala has made significant progress in improving its electrical infrastructure in recent years. However, most studies and efforts have focused on developing policies that directly benefit the national electrical market, which may cause a lack of attention toward solutions that cater to low-consumption cases, such as residential and rural communities. Therefore, it is vital to consider the needs of these communities while developing policies and solutions to ensure that they also have access to reliable and affordable sources of electricity. This study analyzes the cost-effectiveness and technical performance of a hybrid renewable energy system (HRES) that can meet the power needs of low electricity-consuming households in a rural region of Guatemala. The proposed HRES comprises a hybrid photovoltaic-wind turbine-bio generator coupled to battery storage, which caters to the energy needs of a typical household in Alta Verapaz, a rural area in Guatemala with limited electricity access (64.61%). The research considers three scenarios: I) basic electricity needs for the household, II) increased electricity needs for cooking and water heating, and III) future electricity demand in 2050, considering the role of the renewable energy market. Based on Scenario I, the cost-effective solution is a PV system with a capacity of 5.39 kW and 29 kWh battery capacity, with a cost of energy (COE) of 0.893 $/kWh. In Scenario II, a hybrid solution consisting of a 2.46 kW PV system, a 2.20 kW bio-generator, and 16 kWh battery capacity o, results in a COE of 0.605 $/kWh. Scenario III suggests a hybrid system, including 7.90 kW of PV, 3.30 kW bio-generator, and 14 kWh battery to meet the expected energy demand in 2050. COE for this solution is estimated to be 0.297 $/kWh. Considering the declining costs of renewable energy technologies by 2050, the findings highlight that the proposed HRES can be an affordable solution for low-consumption scenarios such as off-grid areas in Guatemala.
Keywords: Hybrid renewable energy system; Energy demand; Optimization; Guatemala (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0957178724000559
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:juipol:v:88:y:2024:i:c:s0957178724000559
DOI: 10.1016/j.jup.2024.101762
Access Statistics for this article
Utilities Policy is currently edited by Beecher, Janice
More articles in Utilities Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().