EconPapers    
Economics at your fingertips  
 

Using kernel density estimation to explore habitat use by seabirds at a marine renewable wave energy test facility

Kirsty J. Lees, Andrew J. Guerin and Elizabeth A. Masden

Marine Policy, 2016, vol. 63, issue C, 35-44

Abstract: If Scottish Government targets are met, the equivalent of 100% of Scotland's electricity demand will be generated from renewable sources by 2020. There are several possible risks posed to seabirds from marine renewable energy installations (MREIs) and many knowledge gaps still exist around the extent to which seabird habitats can overlap with MREIs. In this study, underlying seasonal and interannual variation in seabird distributions was investigated using kernel density estimation (KDE) to identify areas of core habitat use. This allowed the potential interactions between seabirds and a wave energy converter (WEC) to be assessed. The distributions of four seabird species were compared between seasons, years, and in the presence and absence of WECs. Although substantial interannual variation existed in baseline years prior to WEC deployment, the KDEs for all four species analysed were closer to the mooring points in the presence of a WEC in at least one season. The KDEs for all four species also increased in area in at least one season in the presence of a WEC. The KDEs of the northern fulmar and great skua overlapped the mooring points during spring in the presence of a device. The density of observations close to the mooring points increased for great skua, northern gannet, and northern fulmar during summer in the presence of a device. These results suggest that none of the four species analysed have shown avoidance or an extreme change in distribution as a result of the presence of a WEC. The continued monitoring of seabirds during WEC deployments is necessary to provide further data on how distributions may change in response to the presence of WECs.

Keywords: Wet renewables; Seabird distributions; Spatial overlap; Wave energy converter; Environmental impacts (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308597X15002845
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:marpol:v:63:y:2016:i:c:p:35-44

DOI: 10.1016/j.marpol.2015.09.033

Access Statistics for this article

Marine Policy is currently edited by Eddie Brown

More articles in Marine Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:marpol:v:63:y:2016:i:c:p:35-44