EconPapers    
Economics at your fingertips  
 

On maximum weighted Nash welfare for binary valuations

Warut Suksompong and Nicholas Teh

Mathematical Social Sciences, 2022, vol. 117, issue C, 101-108

Abstract: We consider the problem of fairly allocating indivisible goods to agents with weights representing their entitlements. A natural rule in this setting is the maximum weighted Nash welfare (MWNW) rule, which selects an allocation maximizing the weighted product of the agents’ utilities. We show that when agents have binary valuations, a specific version of MWNW is resource- and population-monotone, satisfies group-strategyproofness, and can be implemented in polynomial time.

Keywords: Fair division; Unequal entitlements; Nash welfare (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165489622000282
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:117:y:2022:i:c:p:101-108

DOI: 10.1016/j.mathsocsci.2022.03.004

Access Statistics for this article

Mathematical Social Sciences is currently edited by J.-F. Laslier

More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matsoc:v:117:y:2022:i:c:p:101-108