Classifying interdependence in multidimensional binary preferences
Jonathan K. Hodge and
Micah TerHaar
Mathematical Social Sciences, 2008, vol. 55, issue 2, 190-204
Abstract:
When individual preferences over multiple dimensions are interdependent, the resulting collective decisions can be unsatisfactory and even paradoxical. The notion of separability formalizes this idea of interdependence, and preferences that are completely free from interdependence are said to be separable. In this paper, we develop a mechanism for classifying preferences according to the extent to which they achieve or fail to achieve the desirable property of separability. We show that binary preferences over multiple dimensions are surprisingly complex, in that their interdependence structures defy the most natural attempts at characterization. We also extend previous results pertaining to the rarity of separable preferences by showing that the probability of complete nonseparability approaches 1 as the number of dimensions increases without bound.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165-4896(07)00076-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:55:y:2008:i:2:p:190-204
Access Statistics for this article
Mathematical Social Sciences is currently edited by J.-F. Laslier
More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().