On ordinal equivalence of power measures given by regular semivalues
Francesc Carreras and
Josep Freixas
Mathematical Social Sciences, 2008, vol. 55, issue 2, 221-234
Abstract:
Tomiyama [Tomiyama, Y., 1987. Simple game, voting representation and ordinal power equivalence. International Journal on Policy and Information 11, 67-75] proved that, for every weighted majority game, the preorderings induced by the classical Shapley-Shubik and Penrose-Banzhaf-Coleman indices coincide. He called this property the ordinal equivalence of these indices for weighted majority games. Diffo Lambo and Moulen [Diffo Lambo, L., Moulen, J., 2002. Ordinal equivalence of power notions in voting games. Theory and Decision 53, 313-325] extended Tomiyama's result to all linear (i.e. swap robust) simple games. Here we extend Diffo Lambo and Moulen's result to all the preorderings induced by regular semivalues (which include both classical indices) in a larger class of games that we call weakly linear simple games. We also provide a characterization of weakly linear games and use nonsymmetric transitive games to supplying examples of nonlinear but weakly linear games.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165-4896(07)00089-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:55:y:2008:i:2:p:221-234
Access Statistics for this article
Mathematical Social Sciences is currently edited by J.-F. Laslier
More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().