Non-Archimedean extensive measurement with incomparability
Erik Carlson
Mathematical Social Sciences, 2011, vol. 62, issue 1, 71-76
Abstract:
Standard theories of extensive measurement require that all objects to be measured are comparable, and that no object is infinitely or infinitesimally greater than another. The present paper develops a theory that leaves room for infinite and infinitesimal differences, as well as incomparable objects. Our result is analogous to the standard representation and uniqueness theorem of extensive measurement, and only simple and familiar mathematical concepts are assumed.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165489611000205
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:62:y:2011:i:1:p:71-76
Access Statistics for this article
Mathematical Social Sciences is currently edited by J.-F. Laslier
More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().