Asymmetric empirical similarity
Joshua Teitelbaum
Mathematical Social Sciences, 2013, vol. 66, issue 3, 346-351
Abstract:
The paper suggests a similarity function for applications of empirical similarity theory in which the notion of similarity is asymmetric. I propose defining similarity in terms of a quasimetric. I suggest a particular quasimetric and explore the properties of the empirical similarity model given this function. The proposed function belongs to the class of quasimetrics induced by skewed norms. Finally, I provide a skewness axiom that, when imposed in lieu of the symmetry axiom in the main result of Billot et al. (2008), characterizes an exponential similarity function based on a skewed norm.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165489613000693
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:66:y:2013:i:3:p:346-351
DOI: 10.1016/j.mathsocsci.2013.07.005
Access Statistics for this article
Mathematical Social Sciences is currently edited by J.-F. Laslier
More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().