EconPapers    
Economics at your fingertips  
 

A unifying model for matrix-based pairing situations

Oriol Tejada, Peter Borm and E. Lohmann

Mathematical Social Sciences, 2014, vol. 72, issue C, 55-61

Abstract: We present a unifying framework for transferable utility coalitional games that are derived from a non-negative matrix in which every entry represents the value obtained by combining the corresponding row and column. We assume that every row and every column is associated with a player, and that every player is associated with at most one row and at most one column. The instances arising from this framework are called pairing games, and they encompass assignment games and permutation games as two polar cases. We show that the core of a pairing game is always non-empty by proving that the set of pairing games coincides with the set of permutation games. Then we exploit the wide range of situations comprised in our framework to investigate the relationship between pairing games that have different player sets, but are defined by the same underlying matrix. We show that the core and the set of extreme core allocations are immune to the merging of a row player with a column player. Moreover, the core is also immune to the reverse manipulation, i.e., to the splitting of a player into a row player and a column player. Other common solution concepts fail to be either merging-proof or splitting-proof in general.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165489614000705
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:72:y:2014:i:c:p:55-61

DOI: 10.1016/j.mathsocsci.2014.09.003

Access Statistics for this article

Mathematical Social Sciences is currently edited by J.-F. Laslier

More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matsoc:v:72:y:2014:i:c:p:55-61