Expected utility for nonstochastic risk
Victor Ivanenko and
Illia Pasichnichenko
Mathematical Social Sciences, 2017, vol. 86, issue C, 18-22
Abstract:
Stochastic random phenomena considered in von Neumann–Morgenstern utility theory constitute only a part of all possible random phenomena (Kolmogorov, 1986). We show that any sequence of observed consequences generates a corresponding sequence of frequency distributions, which in general does not have a single limit point but a non-empty closed limit set in the space of finitely additive probabilities. This approach to randomness allows to generalize the expected utility theory in order to cover decision problems under nonstochastic random events. We derive the maxmin expected utility representation for preferences over closed sets of probability measures. The derivation is based on the axiom of preference for stochastic risk, i.e. the decision maker wishes to reduce a set of probability distributions to a single one. This complements Gilboa and Schmeidler’s (1989) consideration of the maxmin expected utility rule with objective treatment of multiple priors.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165489616302293
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:86:y:2017:i:c:p:18-22
DOI: 10.1016/j.mathsocsci.2016.12.005
Access Statistics for this article
Mathematical Social Sciences is currently edited by J.-F. Laslier
More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().