# Optimal bounds for the no-show paradox via SAT solving

*Felix Brandt*,
*Christian Geist* and
*Dominik Peters*

*Mathematical Social Sciences*, 2017, vol. 90, issue C, 18-27

**Abstract:**
One of the most important desirable properties in social choice theory is Condorcet-consistency, which requires that a voting rule should return an alternative that is preferred to any other alternative by some majority of voters. Another desirable property is participation, which requires that no voter should be worse off by joining an electorate. A seminal result by Moulin (1988) has shown that Condorcet-consistency and participation are incompatible whenever there are at least 4 alternatives and 25 voters. We leverage SAT solving to obtain an elegant human-readable proof of Moulin’s result that requires only 12 voters. Moreover, the SAT solver is able to construct a Condorcet-consistent voting rule that satisfies participation as well as a number of other desirable properties for up to 11 voters, proving the optimality of the above bound. We also obtain tight results for set-valued and probabilistic voting rules, which complement and significantly improve existing theorems.

**Date:** 2017

**References:** View references in EconPapers View complete reference list from CitEc

**Citations** Track citations by RSS feed

**Downloads:** (external link)

http://www.sciencedirect.com/science/article/pii/S0165489616300828

Full text for ScienceDirect subscribers only

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:eee:matsoc:v:90:y:2017:i:c:p:18-27

Access Statistics for this article

Mathematical Social Sciences is currently edited by *J.-F. Laslier*

More articles in Mathematical Social Sciences from Elsevier

Series data maintained by Dana Niculescu ().