Resource-monotonicity and population-monotonicity in connected cake-cutting
Erel Segal-Halevi and
Balázs Sziklai
Mathematical Social Sciences, 2018, vol. 95, issue C, 19-30
Abstract:
In the classic cake-cutting problem (Steinhaus, 1948), a heterogeneous resource has to be divided among n agents with different valuations in a proportional way —giving each agent a piece with a value of at least 1∕n of the total. In many applications, such as dividing a land-estate or a time-interval, it is also important that the pieces are connected. We propose two additional requirements: resource-monotonicity (RM) and population-monotonicity (PM). When either the cake or the set of agents grows or shrinks and the cake is re-divided using the same rule, the utility of all remaining agents must change in the same direction. Classic cake-cutting protocols are neither RM nor PM. Moreover, we prove that no Pareto-optimal proportional division rule can be either RM or PM. Motivated by this negative result, we search for division rules that are weakly-Pareto-optimal — no other division is strictly better for all agents. We present two such rules. The relative-equitable rule, which assigns the maximum possible relative value equal for all agents, is proportional and PM. The so-called rightmost mark rule, which is an improved version of the Cut and Choose protocol, is proportional and RM for two agents.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165489618300520
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matsoc:v:95:y:2018:i:c:p:19-30
DOI: 10.1016/j.mathsocsci.2018.07.001
Access Statistics for this article
Mathematical Social Sciences is currently edited by J.-F. Laslier
More articles in Mathematical Social Sciences from Elsevier
Bibliographic data for series maintained by Catherine Liu ().