# Bifurcation analysis of the rock–paper–scissors game with discrete-time logit dynamics

*Yosuke Umezuki*

*Mathematical Social Sciences*, 2018, vol. 95, issue C, 54-65

**Abstract:**
In this study, we investigate a discrete-time version of logit dynamics, as applied to the rock–paper–scissors (RPS) game. First, we show that around the Nash equilibrium point, an attracting closed invariant curve appears due to the Neimark–Sacker bifurcation. Next, near the resonance point, we find a period-three attracting cycle, which can be thought of as a counterpart to the cyclically stable set in the RPS game with best response dynamics. Moreover, we show that the cycle can coexist with an attracting closed invariant curve, a period-three saddle cycle, and the attracting or repelling Nash equilibrium point. Finally, we use the codimension-two bifurcation theory to specify the set of heteroclinic bifurcations that destroy the coexistence of the attractors.

**Date:** 2018

**References:** View references in EconPapers View complete reference list from CitEc

**Citations** Track citations by RSS feed

**Downloads:** (external link)

http://www.sciencedirect.com/science/article/pii/S0165489617301439

Full text for ScienceDirect subscribers only

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:eee:matsoc:v:95:y:2018:i:c:p:54-65

Access Statistics for this article

Mathematical Social Sciences is currently edited by *J.-F. Laslier*

More articles in Mathematical Social Sciences from Elsevier

Bibliographic data for series maintained by Dana Niculescu ().